Níveis de Metano Elevados Seguem-se a Sismo no Oceano Ártico

Nos 12 meses anteriores a 14 de Julho de 2016, 48 sismos com uma magnitude de 4 ou superior na escala de Richter atingiram a área do mapa da imagem abaixo, na maior parte a uma profundidade de 10 km (6.214 milhas).

48 Sismos no Ártico em Julho de 2016

48 terramotos atingiram a área do mapa durante os 12 meses anteriores a 14 de Julho de 2016. Criado por Sam Carana para Arctic-news.blogspot.com com imagens de earthquake.usgs.gov

À medida que as temperaturas continuam a aumentar e o derretimento dos glaciares continua a tirar peso da superfície da Gronelândia, um reajuste isostático pode, cada vez mais, desencadear terremotos em torno da Gronelândia, e em particular sobre a falha geológica que atravessa o Oceano Ártico.

Dois terremotos atingiram recentemente o Oceano Ártico. Um terremoto atingiu com uma magnitude de 4,5 graus na escala Richter a 9 de Julho de 2016. O outro terremoto atingiu com uma magnitude de 4,7 graus na escala Richter a 12 de Julho de 2016, às 00:15:24 UTC, com epicentro a 81.626°N 2.315°W e a uma profundidade de 10,0 km (6.214 milhas), como ilustrado pela imagem abaixo.

Sismo no Ártico a 12 de Julho

A 12 de Julho de 2016, um terramoto atingiu o Oceano Ártico com a magnitude de 4,7 na escala de Richter, com epicentro a 81.626”N 2.315”W e a 10km de profundidade.

Seguindo-se ao terremoto mais recente, elevados níveis de metano apareceram na atmosfera a 15 de Julho de 2016, sobre essa mesma área que o terremoto atingiu, como ilustra a imagem abaixo.

Níveis de metano elevados após sismo no Ártico a 15 de Julho de 2016

Sobre a área atingida por um terramoto a 12 de Julho de 2016, elevados níveis de metano apareceram a uma altitude de 4,116m a 15 de Julho de 2016. A imagem pequena mostra a mesma área a 6.041m de altitude a 15 de Julho. Criado por Sam Carana com imagens da NOAA. Branco= sem dados; cinzento= falha de leitura.

A imagem acima mostra que os níveis de metano foram tão elevados quanto 2505 ppb a uma altitude de 4.116 m ou 13,504 pés na manhã de 15 de Julho de 2016. A uma maior altitude (de 6.041 m ou 19,820 pés), níveis de metano tão altos quanto 2.598 ppb foram registrados naquela manhã e a área de cor magenta a leste do ponto nordeste da Gronelândia (enquadramento em foco) parece indicar a mesma coisa nas imagens entre estas altitudes. Tudo isso indica que o terremoto causou desestabilização de hidratos de metano contidos nos sedimentos naquela área.

Libertação de metano a leste da Gronelândia após sismo

Níveis de metano a uma pressão atmosférica de 840mb variavam entre 1555 e 2058 ppb. Criado por Sam Carana com imagens da NOOA.

A imagem acima, de outro satélite, confirma fortes libertações de metano a leste da Gronelândia, na tarde de 14 de Julho de 2016, enquanto a imagem abaixo mostra níveis elevados de metano a 16 de Julho de 2016, ao longo da falha geológica que atravessa o Oceano Ártico.

Metano com níveis elevados no Ártico após sismo

A imagem abaixo mostra glaciares na Gronelândia e o gelo do mar perto da Gronelândia e Svalbard a 15 de Julho de 2016. Note-se que as nuvens em parte obscurecem a extensão do declínio do gelo do mar.

Declínio do gelo marinho na Gronelândia e Svalbard

Gelo marinho fraturado e lamacento no Ártico

A imagem acima mostra o gelo do mar a 12 de Julho de 2016. Há uma grande área com muito pouco gelo do mar perto do Pólo Norte (à esquerda) e há pouco ou nenhum gelo do mar em torno de Franz Josef Land (à direita). Em geral, o gelo do mar parece lamacento e fraturado em pequenos pedaços finos. Tudo isso é uma indicação de quão quente a água está por baixo do gelo do mar.

Temperaturas muito elevadas no Ártico a 16 de Julho de 2016Além dos choques e mudanças de pressão causados por terremotos, a desestabilização de hidratos de metano pode ser desencadeada pelo calor do oceano alcançando o fundo do mar do Oceano Ártico. Uma vez que o metano chega à atmosfera, pode muito rapidamente elevar as temperaturas locais, agravando ainda mais a situação.

As temperaturas já estão muito elevadas em todo o Ártico, como ilustrado pela imagem abaixo, mostrando que a 16 de Julho de 2016 estiveram 1,6°C sobre o Pólo Norte (círculo verde de cima), enquanto estiveram 32,7°C num local perto de onde o rio Mackenzie desagua no Oceano Ártico (círculo verde de baixo).

O gelo do mar no Ártico não parece nada bem, como também ilustrado pelo cálculo presente pelo Laboratório de Pesquisa Naval em abaixo.

Declínio do glo do mar no Ártico em Julho de 2016

A espessura do gelo do mar caiu drasticamente ao longo dos anos, especialmente o gelo que tinha mais do que 2,5 m de espessura. A imagem abaixo compara a espessura gelo do mar do Ártico (em m) a 15 de Julho, para os anos a partir de 2012 (painel à esquerda) a 2015 (painel direito), utilizando imagens do Laboratório de Pesquisa Naval.

Comparação da espessura do gelo do mar no Ártico entre os anos de 2012 e 2015

[ Clique na imagem para ampliá-la ] A imagem abaixo mostra anomalias da temperatura de superfície do mar em relação a 1961-1990 a 24 de Julho de 2016.

Temperaturas anormais muito elevadas no Ártico em Julho de 2016

As temperaturas da superfície do mar ao largo da costa da América são altas e muito deste calor do oceano será carregado pela Corrente do Golfo em direção ao Oceano Ártico ao longo dos próximos meses.

Temperaturas altas da superficie do mar na corrente do golfo até ao Ártico

A 24 de Julho de 2016, a temperatura da superfície do mar perto da Flórida estava tão alta quanto 33,2°C, uma anomalia de 3,7°C em relação à média de 1981-2011 (círculo verde inferior), enquanto que a temperatura da superfície do mar perto de Svalbard estava tão elevada quanto 17,3°C, uma anomalia de 12,6°Cem relação a 1981-2011 (círculo verde em cima).

Uma tampa de água doce fria (ou seja, baixa salinidade) fica em cima do oceano e esta tampa é alimentada por precipitação (chuva, granizo, neve, etc.), o derretimento do gelo do mar (e icebergs) e água que escorre da terra (de rios e derretimento de glaciares em terra). Esta tampa reduz a transferência de calor do oceano para a atmosfera e, assim, contribui para um Atlântico Norte mais quente onde enormes quantidades de calor são agora transportadas por baixo desta tampa em direção ao Oceano Ártico. O perigo é que mais calor do oceano a chegar ao Oceano Ártico vai desestabilizar clatratos no fundo do mar e resultar em enormes erupções de metano, como discutido em posts anteriores, como este.

À medida que as temperaturas continuam a aumentar, a neve e ogelo no Ártico vão diminuir. Isso poderia resultar em cerca de 1,6°C de aquecimento devido a mudanças de albedo (ou seja, devido ao declínio tanto do gelo do mar do Ártico como da cobertura de neve e gelo em terra). Além disso, cerca de 1,1°C de aquecimento poderiam resultar da libertação de clatratos de metano do fundo do mar dos oceanos do mundo. Como discutido num post anterior, isso poderia suceder como parte de um aumento em relação aos níveis pré-industriais de até 10°C, por volta do ano de 2026.

Incêndios florestais no Alasca Canadá, um feedback de auto-reforço do aquecimento global

Incêndios na Sibéria a 19 de julho de 2016 constituem um feedback no aquecimento globalÀ medida que as temperaturas sobem, o impacto será sentido em primeiro lugar e mais fortemente no Ártico, onde o aquecimento global está a acelerar devido a inúmeros feedbacks que podem atuar como ciclos de auto-reforço.

Já neste momento, isto está a desencadear incêndios florestais em todo o Ártico.

A imagem acima mostra incêndios (indicados por pontos vermelhos) no Alasca e no norte do Canadá, a 15 de Julho de 2016.

A imagem à direita mostra fumo resultante de incêndios florestais na Sibéria. A imagem abaixo mostra que, a 18 de Julho de 2016, os níveis de monóxido de carbono (CO) sobre a Sibéria estavam tão elevados quanto 32318 ppb, e numa área com níveis de dióxido de carbono (CO2) tão baixos quanto 345 ppm, o CO2 atingiu níveis tão elevados quanto 650 ppm no mesmo dia.

Níveis de dióxido de carbono (CO2) e monóxido de carbono (CO) na Sibéria, resultante de incêndios florestais em Julho de 2016

A imagem abaixo mostra a extensão de fumo de incêndios florestais na Sibéria a 23 de Julho de 2016.

Fumo resultante dos incêndios na Sibéria a 23 de Julho de 2016

A imagem abaixo mostra níveis elevados de metano sobre a Sibéria a 19 de Julho de 2016.

Niveis elevados de metano na Sibéria a 19 de Julho de 2016

A imagem abaixo, a partir do satélite MetOp, mostra níveis elevados de metano sobre a Sibéria a 21 de Julho de 2016.

Niveis elevados de metano na Sibéria a 21 de Julho de 2016

Abaixo estão outras imagens que descrevem os níveis de metano médios globais, em relação a 1980-2016 (à esquerda) e 2012-2016 (à direita).

Níveis Médios Globais Metano 1980 2016Níveis de metano entre 2012 e 2016

A imagem abaixo mostra os níveis de metano em Barrow, Alasca.

Medição dos níveis de metano no Alasca ao longo dos anos, mostra pico em 2016

A imagem abaixo mostra que, enquanto que os níveis de metano podem parecer terem-se mantido estáveis ao longo do ano passado quando fazendo as medições ao nível do solo, em altitudes mais elevadas eles subiram fortemente.

Variação dos níveis de metano com a altitude comparando os anos 2015 e 2016

A tabela de conversão abaixo mostra os equivalentes de altitude em pés, m e mb.
57016 pés 44690 pés 36850 pés 30570 pés 25544 pés 19820 pés 14385 pés 8368 pés 1916 pés
17378 m 13621 m 11232 m 9318 m 7786 m 6041 m 4384 m 2551 m 584 m
74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb

A situação é calamitosa e apela a uma acção abrangente e eficaz, conforme descrito no Plano Climático.

Traduzido do original High Methane Levels Follow Earthquake in Arctic Ocean de Sam Carana, publicado no blogue Arctic News, a 17 de Julho de 2016.

Facebooktwittergoogle_plusredditpinterest

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *